Редагуй як бог: технологія зміни геному CRISPR-Cas9

За цю технологію ведуться патентні війни між корпорацією ІМТ і Каліфорнійським університетом. Білл Гейтс інвестує устартап, який допоможе завдяки їй змінити людство. Дженіфер Лопес продюсує кримінальний серіал про її розвиток. Знайомтеся: у спецтемі «Ідеї» – CRISPR-Cas9, високоточна система редагування геному.

Передісторія. Уявімо кишкову паличку. У різних штамів цієї бактерії є різна кількість генів, але переважно їх 4200 – зовсім небагато. І з усім цим щастям паличка повинна вижити сама і ще й розмножитися. Зрозуміло, що вона ставиться до свого геному економно й абищо там не триматиме. Але у 1980-х роках під час розшифровування її геному вчені раптом знайшли, здавалося б, беззмістовну послідовність: мало того, що вона складалася з фрагментів ДНК, що повторювалися багато разів, так ще й нічого не кодувала.

Ці послідовності назвали CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats (короткі паліндромні повтори, регулярно розташовані групами). У різних штамів бактерій ці послідовності відрізнялися. Що вони роблять, ніхто до кінця не розумів, але їх почали застосовувати як маркери: наприклад, компанія з виробництва ензимів і біопродуктів Danisco, щоб запобігти «крадіжці» цінних штамів молочнокислих бактерій для виготовлення закваски.

Прийшли 2000-і і вчені вирішили порівняти CRISPR-послідовності та вже наявні послідовності в ДНК-базах. Виявилося, що CRISPR схожі на геноми вірусів. Відкриття описали у кількох низькорангових журналах і ним ніхто не зацікавився. Тоді ж поруч з CRISPR-послідовностями виявили Cas-гени (Cas – CRISPR associated protein, або CRISPR-асоційований білок).

Група вчених зробила припущення, що білки групи Cas розпізнають вірус завдяки наборам CRISPR-спейсерів (унікальних послідовностей): як тільки РНК з CRISPR збігається з генним матеріалом вірусу, запускається «імунна реакція». Ба більше, у вже згадуваній компанії Danisco провели експеримент: у геном бактерії вбудували нову CRISPR – і вона стала стійкою до вірусу, геном якого повторювала ця CRISPR. Результати опублікували вже не абиде, а в журналі Science.

Проблема. Уся інформація про те, як функціонує наш організм, записана в генах. Літерами A, G, T, C позначають нуклеотиди, з яких складається ДНК. 6,4 млрд нуклеотидів – і навіть однієї помилки достатньо, щоб спричинити генетичне захворювання. Це і синдром Дауна, і серповидноклітинна анемія, і гемофілія, і рак, і ще дуже багато не таких відомих хвороб, спричинених мутаціями, які руйнують життя неймовірній кількості людей.

Ідея. У вчених виникла думка: чому б не боротися з генетичними хворобами, зігравши на випередження – змінюючи ДНК людини ще до народження? Серед групи білків Cas найбільш універсальним виявився Cas9. Для досягнення мети вирішили використати саме поєднання CRISPRі Cas9. І технологія не підвела.

Рішення. Експерименти з CRISPR–Cas9 успішно проводили на бактеріях та в умовах in vitro («у пробірці»), а у 2013 році технологія вийшла на новий рівень – CRISPR–Cas9 запрацював у клітинах еукаріотів (організмів, у чиїх клітинах є ядро – як у людей). А ще через два роки сталося те, що здавалося неможливим: китайські вчені опублікували статтю, де описали свій успішний експеримент з редагування геному людського ембріона. Їм вдалося виправити ген, який відповідав за бета-таласемію (синтез аномального гемоглобіну, що спричиняє анемію).

Якби ембріон вирішили розвивати далі, цілком могла б народитися здорова дитина. При цьому точність редагування була дуже низькою, наукова спільнота відреагувала неоднозначно. Але у 2016 році вчені з США звели вірогідність помилки редагування до нуля і всі визнали – тепер ми можемо змінювати геном людини. Це стало найбільшим науковим відкриттям останніх десятиліть. (Ми вже писали про те, які етичні проблеми ставить перед людством це відкриття.)

Технологія. Як працює CRISPR–Cas9? У живу клітину система потрапляє завдяки «упаковці» з нешкідливих вірусів, що дозволяють проходити крізь мембрани. ДНК людини – дволанцюгова спіраль, що складається нуклеотидів. РНК, що є в CRISPR–Cas9, називають «гідом» – місце, де має відбутися розрив (усього 20-30 нуклеотидів) вона впізнає завдяки комплементарності. Комплементарність – це здатність одних нуклеотидів (A, G) «впізнавати» інші (T, C) й утворювати з ними специфічні стійкі пари, що не дають «розплутатися» спіралі з двох ланцюгів ДНК.

За допомогою ферменту Cas9 зв’язки «розрізаються» і непотрібний фрагмент вилучається. Розрив відновлюється за рахунок природних процесів репарації ДНК під час поділу клітини (при диплоїдному наборі хромосом, коли в кожної є пара, яка підставить дружнє хромосомне плече допомоги) або ж правильний фрагмент ДНК вносять разом з системою CRISPR–Cas9 (при гаплоїдному наборі, коли кожна хромосома є тільки в одному екземплярі).

Що далі? Зараз різні системи CRISPR–Cas9 використовують у найрізноманітніших цілях: для затримки розвитку бокового аміотрофічного склерозу (хвороба, на яку страждав Стівен Хокінг), для лікування міодистрофії Дюшенна, раку, анемії та «очищення» від ВІЛу(елімінація – усунення вірусу з клітини). А завдяки CRISPR-Cas13 (з іншим білком групи Cas) учені навчилися «вимикати» гени.

За допомогою CRISPR–Cas9 відтворюють фільми, внутрішні органи свиней роблять придатними для трансплантації людині, диференційовані клітини перетворюють на стовбурові. Під дією технології «відредаговані» томатине потребують запилення для розмноження, а мурахи перестають реагувати на інших членів колонії, натомість обираючи самітне існування. Хоча до самого методу є багато запитань з етичної точки зору і називати його панацеєю ще рано, ми точно стали на поріг медичної революції та маємо шанс пересмислити усе людське існування.

Вподобайте нас у Facebook і все буде файно!